ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ АДМИНИСТРАЦИИ г.БРАТСКА МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ЛИЦЕЙ №2»

РЕКОМЕНДОВАНО
Внутренним экспертным
советом МБОУ «Лицей № 2»
от «18» июня 2020 г.
протокол № 4
Председатель:
Кучменко Н.А.

У Т В Е Р Ж Д Е Н О Приказом директора МБОУ «Лицей № 2» от «02» сентября 2020 г. № 2/1 Директор: Кулешова Ю.М.

РАБОЧАЯ ПРОГРАММА

учебного (факультативного) курса «Дискретная математика» для обучающихся 10-11 классов среднее общее образование, (углубленный уровень)

Предметная область: математика и информатика

Разработал: Шуматбаева Т.П., учитель математики

СОГЛАСОВАНО от «18» июня 2020 г. Зам. директора Харина Н.П.

Пояснительная записка

Рабочая программа учебного (факультативного) курса Дискретная математика для 10-11 классов составлена в соответствии с требованиями Федерального Государственного образовательного стандарта среднего общего образования, утвержденного приказом Министерства образования и науки Российской Федерации от 17 мая 2012 г., № 413 и направлена на достижение результатов освоения основной образовательной программы среднего общего образования МБОУ «Лицей № 2»; на основе учебного пособия Шевелёв Ю.П. Дискретная математика: Учеб. пособие СПб.: Лань, 2016.-592 с.:ил.,

Спирина М.С. Дискретная математика: учебник для студ. учреждений сред. проф. образования / М.С. Спирина, П.А. Спирин. -7-е изд., стер. – М.: Издательский центр «Академия», 2012.-368 с., Судоплатов С.В., Овчинникова Е.В. Дискретная математика: учебник, НГТУ, 2011.

Математика стала частью нашей культуры. Человек не может считать себя широкообразованным, не имея представления о современной математике, её роли в повседневной жизни, в науке. Для понимания излагаемых вопросов достаточно знаний в объеме программы средней школы. Некоторые затруднения может вызывать широкое использование языка теории множеств. Чтобы этого не произошло, изложение факультативного курса начинается именно с этой темы. Факультативный курс «Дискретная математика» займёт значимое место в профильном образовании старшеклассников, так как может научить их применять свои умения в нестандартных ситуациях, дать возможность «поучиться не для аттестата», а для реализации последующих жизненных планов,

Целесообразность введения данного курса состоит и в том, что его содержание, форма его организации позитивно влияют на мотивацию старшеклассника к учению, развивают его учебную мотивацию по предметам естественно-математического и информационного циклов, помогут школьнику через практические занятия оценить свой потенциал с точки зрения образовательной перспективы и предоставят ему возможность оценить прикладную значимость дискретной математики.

Целью реализации программы является знакомство учащихся с дискретной математикой, а именно с элементами математической логики, теорией множеств, комбинаторикой, теорией графов; углубление знаний учащихся о различных методах решения оптимизационных задач, использующих алгоритмический подход; формирование у школьников компетенций, направленных на выработку навыков самостоятельной и групповой исследовательской деятельности.

Задачи курса:

- 1. Углубление имеющихся знаний элементов алгебры логики, теории множеств, комбинаторных знаний и изучение новых сложных математических методов.
- 2. Изучить новые математические методы и приёмы решения задач. Построение графовых моделей, применение знаний к решению прикладных задач.
- 3. Развитие общей логики рассуждений учащихся: умения анализировать, сопоставлять, сравнивать, систематизировать и обобщать.
- 4. Воспитание личности в процессе освоения математики и математической деятельности, развитие у учащихся самостоятельности и способности к самоорганизации.
- 5. Обучение различным методам использования графов в дальнейшей профессиональной деятельности.

Курс рассчитан на 2 года (всего 68 часов).

Программа предусматривает использование следующего учебно-методического комплекта:

1. Шевелёв Ю.П. Дискретная математика: Учеб. пособие СПб.: Лань, 2016.-592 с.:ил.,

- 2. Спирина М.С. Дискретная математика : учебник для студ. учреждений сред. проф. образования / М.С. Спирина, П.А. Спирин. -7-е изд., стер. М. : Издательский центр «Академия», 2012.- 368 с.,
- 3. Судоплатов С.В., Овчинникова Е.В. Дискретная математика: учебник, НГТУ, 2011.
- 4. Харари. Ф Теория графов/ Пер. с англ. и предисл. В.П. Козырева. Под ред. Г.П. Гаврилова. Изд. 2-е. М.: Едиториал УРСС, 2003.- 296с.

Планируемые результаты освоения факультативного курса «Дискретная математика»

Параллель	Предметные	Метапредметные	Личностные
10 класс		Регулятивные	Могут быть
	Работать с	учащиеся научатся:	сформированы:
	математическим текстом	формулировать и	первоначальные
	(структурирование,	удерживать учебную	представления о
	извлечение необходимой	задачу;	математической науке
	информации), точно и	выбирать действия в	как сфере человеческой
	грамотно выражать свои	соответствии с	деятельности,
	мысли в устной и	поставленной	коммуникативная
	письменной речи,	задачей и условиями	компетентность в
	применяя	реализации;	общении и
	математическую	планировать пути	
	терминологию и	достижения целей,	сотрудничестве со
	символику, использовать	адекватно оценивать	сверстниками в
	различные языки	правильность или	образовательной,
	математики (словесный,	ошибочность	учебно-
	символический,	выполнения учебной	исследовательской,
	графический),	задачи, её	творческой и других
	обосновывать суждения.	объективную	видах деятельности;
	Владеть базовым	трудность и	критичность
	понятийным аппаратом:	собственные	мышления, умение
	теорией высказывания,	возможности её	распознавать логически
	основные логические	решения.	некорректные
	связки, логические	Познавательные	высказывания,
	формулы, конечное	учащиеся научатся:	отличать гипотезу от
	множество, элемент	самостоятельно	факта;
	множества,	выделять и	креативность
	подмножество,	формулировать	=
	пересечение, объединение	познавательную	мышления,
	и разность множеств,	цель;	инициативы,
	задавать множества	использовать общие	находчивости,
	перечислением и	приёмы решения	активности при
	характеристическим	задач;	решении
	свойством;	создавать, применять	математических задач.
	вычислять количество	и преобразовывать	
	упорядоченных	знаково-	
	разбиений множества на	символические	
	подмножества. вычислять	средства, модели и	
	количество		

неупорядоченных разбиений множества на подмножества; различать схемы с повторением и без повторения; применять правила комбинаторики при решении задач; вычислять коэффициенты в полиномиальной формуле, биномиальные коэффициенты; использовать свойства биномиальных коэффициентов при решении задач. самостоятельно приобретать и применять знания в различных ситуациях для решения несложных практических задач, в том числе с использованием при необходимости справочных материалов, калькулятора и компьютера; пользоваться предметным указателем энциклопедий и справочником для нахождения информации.

схемы для решения задач; самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем Коммуникативные учащиеся научатся: организовывать

учащиеся научатся: организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников; взаимодействовать и находить общие способы работы; работать в группе.

11 класс

понятийным аппаратом: рекуррентные отношения, класс линейных рекуррентных отношений, основные понятия теории графов, различные типы графов. Иметь представление о матрице смежности и матрице инцидентности.

Владеть базовым

учащиеся научатся: осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач; составлять план и последовательность действий;

Регулятивные

действий; Познавательные учащиеся научатся: Будут сформированы:

ответственное отношение к учению; готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию; понимать смысл поставленной задачи, выстраивать Дается понятие об эйлеровом и гамильтоновом графах. Выполнять математические преобразования, применять их для решения учебных математических, графических задач, связанных с построением графов. Самостоятельно действовать в ситуации неопределённости при решении актуальных проблем, а также самостоятельно интерпретировать результаты решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.

понимать сущность алгоритмических предписаний и уметь действовать и соответствии с предложенным алгоритмом; понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации; находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме. Коммуникативные учащиеся научатся: организовывать учебное сотрудничество и совместную

деятельность с учителем и сверстниками: определять цели, взаимодействовать и находить общие способы работы; работать в группе: аргументировать свою позицию и координировать её с

позициями партнеров в

решения в

сотрудничестве при выработке общего

аргументацию, приводить примеры и контрпримеры; начальные навыки адаптации в динамично изменяющемся мире; формирование способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений; умение контролировать процесс и результат учебной математической деятельности.

	совместной	
	деятельности.	

Содержание факультативного (курса)

Введение в дискретную математику.

1. Элементы математической логики

Высказывания. Составные высказывания. Простейшие связки. Логические отношения. Решение логических задач.

2. Теория множеств

Конечные множества. Способы задания множеств. Подмножества. Операции над множествами. Круги Эйлера. Метод включения и исключения. Кортежи. Бинарные отношения. Отображение множеств.

3. Комбинаторика и рекуррентные соотношения

Введение в комбинаторику. Предмет и методы комбинаторики. Правила суммы и произведения. Перечислительная комбинаторика. Основные комбинаторные конструкции: размещения, сочетания и перестановки в схемах без повторений. Комбинации элементов с повторениями. Комбинаторика и вероятность.

Бином Ньютона. Биномиальные коэффициенты. Свойства биномиальных коэффициентов. Связь между сочетанием, биномиальными коэффициентами и треугольником Паскаля.

Арифметическая и геометрическая прогрессии. Последовательность Фибоначчи. Метод рекуррентных соотношений. Однородные линейные рекуррентные отношения.

4. Графы.

Введение в теорию графов. История возникновения теории графов. Некоторые основные понятия. Степень вершины. Маршруты, цепи, циклы. Связность графа. Ориентированные графы. Операции над графами. Графы и бинарные отношения. Способы задания графов. Некоторые типы графов: плоские, эйлеровы, гамильтоновы, деревья. Игры и головоломки с ориентированными графами. Деревья. Применение графов при решении различных задач

Тематическое планирование

№	Наименование темы	Количество часов, отводимых на освоение			
		темы			
	10 класс				
1. Элементы математической логики (9 часов)					
1	Высказывания. Истинные и ложные	1			
	высказывания. Простые и составные				
	высказывания.				
2	Простейшие связки: отрицание,	2			
	конъюнкция, дизъюнкция, импликация,				
	эквивалентность.				
3	Взаимоотношение двух высказываний.	2			
4	Решение логических задач различного	3			
	типа.				

5	Самостоятельная работа №1	1
	2. Теория множеств (8 ч	часов)
1	Конечные множества и операции над	2
	ними	
2	Решение задач с использованием	2
	формулы включений и исключений.	
3	Бинарные отношения.	1
4	Отображение множеств.	2
5	Самостоятельная работа № 2	1
	3. Комбинаторика и рекуррентные с	оотношения (17 часов)
1	Предмет и методы комбинаторики	1
2	Схема Горнера	1
3	Правило суммы и умножения	2
4	Основные комбинаторные конструкции:	4
	размещения, сочетания в схемах без	
	повторений и с повторением.	
5	Применение элементов комбинаторики	3
	для решения вероятностных задач.	
6	Бином Ньютона.	1
7	Биномиальные коэффициенты. Свойства	2
	биномиальных коэффициентов.	
8	Связь между сочетанием,	2
	биномиальными коэффициентами и	
	треугольником Паскаля.	
9	Самостоятельная работа № 3	1
	11 класс	
	3. Комбинаторика и рекуррентные со	отношения (9 часов)
1	Повторение. Основные комбинаторные	1
_	конструкции	_
2	Арифметическая и геометрическая	2
_	прогрессии.	
3	Последовательность Фибоначчи.	1
4	Метод рекуррентных соотношений.	2
5	Решение комбинаторных задач	2
	различными способами	
4	Самостоятельная работа №1	1
_	5. Графы (25 ча	,
1	Введение в теорию графов.	2
	Исторические представления.	
	Обоснование важности этого раздела.	
2	Основные понятия теории графов.	2
-	Неориентированные графы.	
3	Ориентированные графы. Степень	2
4	вершины.	
4	Маршруты, цепи, циклы.	1
5	Изображение и составление графов.	1
6	Практическая работа	1

7	Способы задания графов: аналитический,	2
	геометрический, матричный	
8	Некоторые виды графов: двудольные,	2
	эйлеровы, гамильтоновы, плоские.	
9	Операции над графами	2
10	Графы и бинарные отношения	1
10	Игры и головоломки с	3
	ориентированными графами	
11	Деревья. Операции над деревьями.	1
13	Применение графов при решении	3
	логических задач.	
14	Самостоятельная работа № 2.	1
15	Итоговое занятие по теме «Графы»	1
Итого		68 часов

Система оценки достижения обучающимися планируемых результатов

Система оценки достижения обучающимися планируемых результатов Оптимальными формами контроля знаний определены проверочные работы с периодичностью по итогам изучения разделов и ключевым темам. Индивидуальные результаты и достижения учащихся могут быть представлены в виде кроссвордов, задач, составленных самостоятельно, на олимпиадах различного уровня, в виде реферативных и исследовательских работ на научно-практических конференциях. Формами контроля являются самостоятельные и практические работы. Практические и самостоятельные работа оцениваются по пятибалльной системе.